282 research outputs found

    Enabling Cost-Effective Blockchain Applications via Workload-Adaptive Transaction Execution

    Full text link
    As transaction fees skyrocket today, blockchains become increasingly expensive, hurting their adoption in broader applications. This work tackles the saving of transaction fees for economic blockchain applications. The key insight is that other than the existing "default" mode to execute application logic fully on-chain, i.e., in smart contracts, and in fine granularity, i.e., user request per transaction, there are alternative execution modes with advantages in cost-effectiveness. On Ethereum, we propose a holistic middleware platform supporting flexible and secure transaction executions, including off-chain states and batching of user requests. Furthermore, we propose control-plane schemes to adapt the execution mode to the current workload for optimal runtime cost. We present a case study on the institutional accounts (e.g., coinbase.com) intensively sending Ether on Ethereum blockchains. By collecting real-life transactions, we construct workload benchmarks and show that our work saves 18% ~ 47% per invocation than the default baseline while introducing 1.81 ~ 16.59 blocks delay

    On Multi-Domain Long-Tailed Recognition, Imbalanced Domain Generalization and Beyond

    Full text link
    Real-world data often exhibit imbalanced label distributions. Existing studies on data imbalance focus on single-domain settings, i.e., samples are from the same data distribution. However, natural data can originate from distinct domains, where a minority class in one domain could have abundant instances from other domains. We formalize the task of Multi-Domain Long-Tailed Recognition (MDLT), which learns from multi-domain imbalanced data, addresses label imbalance, domain shift, and divergent label distributions across domains, and generalizes to all domain-class pairs. We first develop the domain-class transferability graph, and show that such transferability governs the success of learning in MDLT. We then propose BoDA, a theoretically grounded learning strategy that tracks the upper bound of transferability statistics, and ensures balanced alignment and calibration across imbalanced domain-class distributions. We curate five MDLT benchmarks based on widely-used multi-domain datasets, and compare BoDA to twenty algorithms that span different learning strategies. Extensive and rigorous experiments verify the superior performance of BoDA. Further, as a byproduct, BoDA establishes new state-of-the-art on Domain Generalization benchmarks, highlighting the importance of addressing data imbalance across domains, which can be crucial for improving generalization to unseen domains. Code and data are available at: https://github.com/YyzHarry/multi-domain-imbalance.Comment: ECCV 202

    How to Rationally Select Your Delegatee in PoS

    Full text link
    This paper centers around a simple yet crucial question for everyday users: How should one choose their delegated validators within proof-of-stake (PoS) protocols, particularly in the context of Ethereum 2.0? This has been a long-overlooked gap, as existing studies have primarily focused on inter-committee (validator set) behaviors and activities, while neglecting the dynamic formation of committees, especially for individual stakeholders seeking reliable validators. Our study bridges this gap by diving into the delegation process (normal users delegate their small-value tokens to delegatees who later act as validators) before entering an actual consensus phase. We propose a Bayesian model to quantify normal users' trust in delegatees, which we further incorporate into a game-theoretical model to simulate users' reactions against a set of critical factors identified through extensive research (including 10+ staking service provider as well as 30+ PoS blockchains). Our results reveal that users tend to choose their delegatees and utilize their tokens by carefully weighing the delegation cost, the behaviors of other users, and the reputation of delegatees, ultimately reaching a Nash equilibrium. Unfortunately, the collective trend significantly increases the likelihood of token concentration on a small number of delegatees

    Learning Continuous Grasping Function with a Dexterous Hand from Human Demonstrations

    Full text link
    We propose to learn to generate grasping motion for manipulation with a dexterous hand using implicit functions. With continuous time inputs, the model can generate a continuous and smooth grasping plan. We name the proposed model Continuous Grasping Function (CGF). CGF is learned via generative modeling with a Conditional Variational Autoencoder using 3D human demonstrations. We will first convert the large-scale human-object interaction trajectories to robot demonstrations via motion retargeting, and then use these demonstrations to train CGF. During inference, we perform sampling with CGF to generate different grasping plans in the simulator and select the successful ones to transfer to the real robot. By training on diverse human data, our CGF allows generalization to manipulate multiple objects. Compared to previous planning algorithms, CGF is more efficient and achieves significant improvement on success rate when transferred to grasping with the real Allegro Hand. Our project page is at https://jianglongye.com/cgf .Comment: Project page: https://jianglongye.com/cg

    The Perspectives of E-Commerce System and Innovation Economic Product Development: Mathematical and Computer Modeling Strategies Based on Virtual Reality Technology and Medical Diagnostics

    Get PDF
    Developing the e-commerce system as a product of health economics is the research team's research task. We performed computer modeling strategy analysis using virtual reality technology principles and clinical diagnostics. We tried to put forward a computer model for solving the problem of remote medical care and carried out the necessary feasibility analysis. I put forward a strategy in light of the key knowledge of cross-specialties, and carried out reports and expositions to address the technical difficulties of the present

    Efficiently Hardening SGX Enclaves against Memory Access Pattern Attacks via Dynamic Program Partitioning

    Full text link
    Intel SGX is known to be vulnerable to a class of practical attacks exploiting memory access pattern side-channels, notably page-fault attacks and cache timing attacks. A promising hardening scheme is to wrap applications in hardware transactions, enabled by Intel TSX, that return control to the software upon unexpected cache misses and interruptions so that the existing side-channel attacks exploiting these micro-architectural events can be detected and mitigated. However, existing hardening schemes scale only to small-data computation, with a typical working set smaller than one or few times (e.g., 88 times) of a CPU data cache. This work tackles the data scalability and performance efficiency of security hardening schemes of Intel SGX enclaves against memory-access pattern side channels. The key insight is that the size of TSX transactions in the target computation is critical, both performance- and security-wise. Unlike the existing designs, this work dynamically partitions target computations to enlarge transactions while avoiding aborts, leading to lower performance overhead and improved side-channel security. We materialize the dynamic partitioning scheme and build a C++ library to monitor and model cache utilization at runtime. We further build a data analytical system using the library and implement various external oblivious algorithms. Performance evaluation shows that our work can effectively increase transaction size and reduce the execution time by up to two orders of magnitude compared with the state-of-the-art solutions

    Sequential Attacks on Kalman Filter-based Forward Collision Warning Systems

    Full text link
    Kalman Filter (KF) is widely used in various domains to perform sequential learning or variable estimation. In the context of autonomous vehicles, KF constitutes the core component of many Advanced Driver Assistance Systems (ADAS), such as Forward Collision Warning (FCW). It tracks the states (distance, velocity etc.) of relevant traffic objects based on sensor measurements. The tracking output of KF is often fed into downstream logic to produce alerts, which will then be used by human drivers to make driving decisions in near-collision scenarios. In this paper, we study adversarial attacks on KF as part of the more complex machine-human hybrid system of Forward Collision Warning. Our attack goal is to negatively affect human braking decisions by causing KF to output incorrect state estimations that lead to false or delayed alerts. We accomplish this by sequentially manipulating measure ments fed into the KF, and propose a novel Model Predictive Control (MPC) approach to compute the optimal manipulation. Via experiments conducted in a simulated driving environment, we show that the attacker is able to successfully change FCW alert signals through planned manipulation over measurements prior to the desired target time. These results demonstrate that our attack can stealthily mislead a distracted human driver and cause vehicle collisions.Comment: Accepted by AAAI2

    A theoretical framework of immune cell phenotypic classification and discovery

    Get PDF
    Immune cells are highly heterogeneous and show diverse phenotypes, but the underlying mechanism remains to be elucidated. In this study, we proposed a theoretical framework for immune cell phenotypic classification based on gene plasticity, which herein refers to expressional change or variability in response to conditions. The system contains two core points. One is that the functional subsets of immune cells can be further divided into subdivisions based on their highly plastic genes, and the other is that loss of phenotype accompanies gain of phenotype during phenotypic conversion. The first point suggests phenotypic stratification or layerability according to gene plasticity, while the second point reveals expressional compatibility and mutual exclusion during the change in gene plasticity states. Abundant transcriptome data analysis in this study from both microarray and RNA sequencing in human CD4 and CD8 single-positive T cells, B cells, natural killer cells and monocytes supports the logical rationality and generality, as well as expansibility, across immune cells. A collection of thousands of known immunophenotypes reported in the literature further supports that highly plastic genes play an important role in maintaining immune cell phenotypes and reveals that the current classification model is compatible with the traditionally defined functional subsets. The system provides a new perspective to understand the characteristics of dynamic, diversified immune cell phenotypes and intrinsic regulation in the immune system. Moreover, the current substantial results based on plasticitomics analysis of bulk and single-cell sequencing data provide a useful resource for big-data–driven experimental studies and knowledge discoveries

    Dynamic Handover: Throw and Catch with Bimanual Hands

    Full text link
    Humans throw and catch objects all the time. However, such a seemingly common skill introduces a lot of challenges for robots to achieve: The robots need to operate such dynamic actions at high-speed, collaborate precisely, and interact with diverse objects. In this paper, we design a system with two multi-finger hands attached to robot arms to solve this problem. We train our system using Multi-Agent Reinforcement Learning in simulation and perform Sim2Real transfer to deploy on the real robots. To overcome the Sim2Real gap, we provide multiple novel algorithm designs including learning a trajectory prediction model for the object. Such a model can help the robot catcher has a real-time estimation of where the object will be heading, and then react accordingly. We conduct our experiments with multiple objects in the real-world system, and show significant improvements over multiple baselines. Our project page is available at \url{https://binghao-huang.github.io/dynamic_handover/}.Comment: Accepted at CoRL 2023. https://binghao-huang.github.io/dynamic_handover
    corecore